Carbon dioxide in Earth’s atmosphere

Carbon dioxide (CO2) is an important trace gas in Earth’s atmosphere. It is an integral part of the carbon cycle, a biogeochemical cycle in which carbon is exchanged between the Earth’s oceans, soil, rocks and the biosphere. Plants and other photoautotrophs use solar energy to produce carbohydrate from atmospheric carbon dioxide and water by photosynthesis. Almost all other organisms depend on carbohydrate derived from photosynthesis as their primary source of energy and carbon compounds. CO2 absorbs and emits infrared radiation at wavelengths of 4.26 µm (asymmetric stretching vibrational mode) and 14.99 µm (bending vibrational mode) and consequently is a greenhouse gas that plays a significant role in influencing Earth’s surface temperature through the greenhouse effect.

Concentrations of CO2 in the atmosphere were as high as 4,000 parts per million (ppm) during the Cambrian period about 500 million years ago to as low as 180 ppm during the Quaternary glaciation of the last two million years. Estimates based on reconstructed temperature records suggests that the amount of CO2 during the last 420 million years ago was with ~2000 ppm highest during the Devonian (∼400 million years ago) and Triassic (220–200 million years ago), with a few maximum estimates ranging up to ∼3,700±1,600 ppm (215 million years ago). Global annual mean CO2 concentration has increased by more than 45% since the start of the Industrial Revolution, from 280 ppm during the 10,000 years up to the mid-18th century to 410 ppm as of mid-2018. The present concentration is the highest in the last 800,000 and possibly even the last 20 million years. The increase has been caused by human activities, particularly the burning of fossil fuels and deforestation. This increase of CO 2 and other long-lived greenhouse gases in Earth’s atmosphere has produced the current episode of global warming. About 30–40% of the CO2 released by humans into the atmosphere dissolves into oceans, rivers and lakes, which has produced ocean acidification.

Courtesy of Wikipedia